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Root evolution has resulted in the extant bifurcating roots in lycophytes,
adventitious/lateral roots in euphyllophytes (ferns and seed plants), and pri-
mary roots in seed plants. Here, we hypothesize a role for intermediate-clade-
WUSCHEL-RELATED HOMEOBOX (IC-WOX) genes in root evolution. IC-WOX
might not be specifically involved in lycophyte bifurcation rooting. In the fern
Ceratopteris richardii, IC-WOX is expressed in adventitious/lateral root founder
cells. In the seed plant Arabidopsis thaliana, there are two IC-WOX subclades,
AtWOX11/12 and AtWOX8/9, in adventitious and primary root founder cells,
respectively. Thus, IC-WOX was recruited in the common ancestor of ferns and
seed plants for adventitious/lateral root organogenesis and evolved into two
subclades in seed plants: one was retained in adventitious root organogenesis,
while the other was recruited for primary root organogenesis.

Introduction to Root Evolution in Vascular Plants
In evolution, the appearance of vascular plants was a great step during the colonization of land
by plants [1–3]. Then, vascular plants evolved into several lineages, and two of them survive
today: lycophytes and euphyllophytes [3–11] (Figure 1A). The two lineages diverged more than
400 million years ago [3]. Lycophytes, such as Selaginella (spike mosses), have bifurcating
branches (also called dichotomous branches or dichopodial branches) and microphylls [3].
Euphyllophytes include ferns and seed plants. The evolution of roots in vascular plants was a
step toward the successful adaptation to different environments, because they anchor plants
and allow for retrieving soil nutrients [5,12–14]. In this opinion article, we summarize recent
studies on WUSCHEL-RELATED HOMEOBOX (WOX) genes and provide our view on the
relationship between WOX evolution and root evolutionary events.

Three Root-Evolution Events
Based on the fossil evidence and the root anatomy of extant vascular plants, there were separate
root-evolution events [12,13]. The first root-evolution eventwas in the lycophytes, which had evolved
rootsby theEarlyDevonian [12–14] (Figure1A).At that timerootswerenotobserved inothervascular
plants.Theextant lycophytesusuallyproduce bifurcating roots, inwhich thedivisionof therootapical
meristem gives rise to independent autonomous twin root meristems [3,15] (Figure 1B). The second
root-evolution event was in the ancestor of the euphyllophytic lineage, which evolved roots until the
Middle Devonian [12,13] (Figure 1A). Thus, root organogenetic events might be independent in
lycophytes and euphyllophytes [12,13]. The extant ferns usually have adventitious roots and lateral
roots, but do not have a primary root [16,17] (Figure 1C). The third root-evolution event might have
occurred during the appearance of seed plants (Figure 1A), as indicated by the fundamental
evolutionary distinction in which extant seed plants undergo allorhizic rooting behavior (i.e., embry-
onic root formation from a bipolar embryo). This is different from homorhizic rooting behavior (i.e., all
roots originating from the shoot system) found in other vascular plants. Therefore, seed plants have
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primary roots in addition to adventitious and lateral roots [12,13,18] (Figure 1D,E). Overall, the three
root-evolution events gave rise to bifurcating roots in extant lycophytes, adventitious/lateral roots in
extant euphyllophytes, and primary roots in extant seed plants, respectively (Figure 1).

IC-WOX Expression in Root Founder Cells
In vascular plants, all of the organs are initiated from stem cells. Because WOX genes are
associated with stem cell functions, the evolution of the WOX family may provide insights into
the evolution of plant organs. WOX family genes are largely classified into three clades [19–24]
(Figure 2): the ancient-clade-WOX (AC-WOX) genes, which are present in all green plants; the
intermediate-clade-WOX (IC-WOX) genes, which are found only in vascular plants, including
lycophytes and euphyllophytes, but not in non-vascular plants; and the WUS-clade-WOX (WC-
WOX) genes, which are present in euphyllophytes, including ferns and seed plants, but not in
non-vascular plants and lycophytes (Figure 2). The evolution and complexity of the WOX family
may be associated with the diversification of stem cell types during plant evolution.
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Figure 1. Root Evolution in Vascular Plants. (A) Simplified evolutionary route of vascular plants, showing three root-evolution events in lycophyte and euphyllophyte
lineages (black circles). (B–D) Root systems of Selaginella kraussiana (B), Ceratopteris richardii (C), and Arabidopsis thaliana (D and E).
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Recent studies suggested that the IC-WOX genes could have evolutionarily conserved func-
tions in root organogenesis, which raises the possibility of IC-WOX gene recruitment in root
evolutionary events. The first IC-WOX gene might have evolved in the common ancestor of
lycophytes and euphyllophytes [19,22].

In the lycophyte Selaginella kraussiana, there is only one IC-WOX gene, SkWOX11C [19]
(Figure 2). However, SkWOX11C is expressed ubiquitously in many tissues, including micro-
phylls, rhizophores, shoots, and stems [19]. Thus, SkWOX11C might not be a specific gene
controlling root organogenesis (Figure 3A). However, whether other WOX genes in S. kraussiana
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Figure 2. Phylogeny of WOX Genes in Plants. Phylogenetic analysis of the homeodomain sequences of WOX
proteins, using the neighbor-joining method of MEGA7.0 [40–42]. The sequences were obtained from published data [19–
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are labeled in purple. WOX proteins from seed plants Gnetum gnemon (GgWOX), Picea abies (PaWOX), Oryza sativa
(OsWOX), and Arabidopsis thaliana (AtWOX) are labeled in black. MEGA7.0, Molecular Evolutionary Genetics Analysis
Version 7.0.

492 Trends in Plant Science, June 2018, Vol. 23, No. 6



function in root organogenesis is not clear. Expression of SkWOX13B, an AC-WOX gene, might
be closely related to root organogenesis [19]. In addition, diverse root structures and develop-
mental patterns were observed in lycophytes [25], suggesting that root evolution in lycophytes
could be complex. Further analysis of the WOX genes together with other root-related genes at
the molecular and cellular levels will be helpful to analyze their roles in root organogenesis in
lycophytes.

In the fern Ceratopteris richardii, there are at least two IC-WOX genes, CrWOXA and CrWOXB
[26] (Figure 2). CrWOXB is widely expressed in many tissues [26]. Interestingly, CrWOXA is
specifically expressed in root mother cells, also called root founder cells, during lateral and
adventitious root initiation [16,17,26] (Figure 3A,D). Specifically, during lateral rooting, an
endodermal cell changes its fate to become the lateral root mother cell that expresses CrWOXA
(Figure 3D). During adventitious rooting from the leaf, a hypodermal cell becomes the root apical
mother cell that expresses CrWOXA (Figure 3D). CrWOXA’s expression is no longer detected
when the root mother cell changes its fate, through division, to become the root apical cell [26]
(Figure 3D). Therefore, CrWOXA appears to specifically define the root mother (founder) cell.

In seed plants, the IC-WOX genes evolved into two subclades: the WOX8/9 subclade and the
WOX11/12 subclade [20,22,24,27] (Figures 2 and 3A). In the seed plant Arabidopsis thaliana,
the WOX11/12 subclade genes AtWOX11 and AtWOX12 are specifically expressed in the
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Figure 3. Hypothesis on the Recruitment of IC-WOX Genes in Root Evolution. (A) Possible evolutionary route of
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adventitious root founder cell during rooting from detached leaf explants [28–30] (Figure 3B).
The expression levels of AtWOX11 and AtWOX12 decrease after the division of the adventitious
root founder cell to become the root primordium [28,29,31]. The WOX11/12 subclade was also
reported to be involved in adventitious rooting in rice (Oryza sativa) and poplar (Populus
deltoides � Populus euramericana) [32,33]. However, AtWOX11 and AtWOX12 are not
expressed in the lateral root founder cell when plants are vertically grown on medium [30].
The A. thaliana WOX8/9 subclade genes AtWOX8 and AtWOX9 are coexpressed in the
hypophyseal cell (hypophysis) of the embryo [20,34] (Figure 3C). The hypophyseal cell’s division
gives rise to the quiescent center precursor (i.e., lens-shaped cell) and the columella precursor
(Figure 3C). Therefore, the hypophyseal cell might be regarded as the founder cell of the primary
root. The expression levels of AtWOX8 and AtWOX9 are no longer detected after the hypo-
physeal cell’s division [20,34].

Overall, IC-WOX genes have specific expression patterns in different types of root founder cells
of euphyllophytes, suggesting that their molecular functions in root organogenesis might be
conserved during the evolution of euphyllophytes. However, there are only expression patterns
but no functional evidence of WOX genes in either lycophytes or ferns. Further investigation of
the WOX family at the genetic and molecular levels will improve our understanding of how WOX
genes are involved in root development in lycophytes and ferns.

Hypothesis on the Recruitment of IC-WOX in Root Evolution
Here, we present our hypothesis on the molecular bases of root-evolution events (Figure 3A).
IC-WOX might not be specifically involved in the first root-evolution event, which resulted in
bifurcating roots in lycophytes. The second root-evolution event, which resulted in adventitious
and lateral roots in ferns, recruited IC-WOX to establish the root founder cells. In ferns,
adventitious and lateral root organogenesis might share a very similar process that requires
IC-WOX. The third root-evolution event, which resulted in primary roots in seed plants, was
based on the separation of the two subclades of IC-WOX. The WOX8/9 subclade was recruited
to the founder cells of primary roots, and the WOX11/12 subclade was retained in the founder
cells of adventitious roots. Overall, the IC-WOX genes were successively recruited to root
founder cells during the second and third root-evolution events in euphyllophytes.

An interesting molecular event that follows the root founder cell division is the expression of the
WC-WOX genes in the daughter cells. In C. richardii, the division of the root apical mother cell or
lateral root mother cell results in the formation of the tetrahedral root apical cell, which has four
division planes that form three proximal merophytes and a distal merophyte (the root cap initial
cell), and the C. richardii WC-WOX gene WUS lineage (CrWUL) is specifically expressed in the
proximal merophytes [26] (Figure 3D). During adventitious rooting from A. thaliana leaf explants,
the division of the adventitious root founder cell results in the root primordium that expresses the
WC-WOX gene AtWOX5 [28,29,31] (Figure 3B). In the A. thaliana embryo, the quiescent center
precursor, one of the daughter cells of the hypophyseal cell, expresses AtWOX5 [20] (Figure 3C).
Therefore, the formation of daughter cells that express WC-WOX after the root founder cell’s
division might be a conserved cellular mechanism of root organogenesis in euphyllophytes.

Currently, it is not clear why IC-WOX genes are not expressed in the lateral root founder cells in
A. thaliana [30]. It is possible that the lateral root formation mechanisms are not conserved
between seed plants and ferns. In C. richardii, the lateral root is initiated from the endodermal
cell, while in A. thaliana, the lateral root is initiated from pericycle cells. In addition, a single
endodermal cell may serve as the founder cell to initiate lateral rooting in C. richardii, while the
asymmetric division of several pairs of founder cells is required for lateral root initiation in A.
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thaliana [35–37]. Therefore, one possibility is that lateral rooting in ferns and seed plants might
be independent evolutionary events.

After initiation, the formation and maintenance of the root apical meristems might share some
similar mechanisms in lycophytes and euphyllophytes [38]. Transcriptome analysis indicated
that conserved gene expression programs might be adopted in developing roots of lycophytes
and euphyllophytes [38]. This suggests that the molecular network of root growth could be
conserved in evolution, although the molecular mechanism for root initiation could be different
between lycophytes and euphyllophytes.

Concluding Remarks and Future Perspectives
The function of the evolutionarily conserved IC-WOX genes in euphyllophytes could be the
establishment of the root founder cells, which is the first step during root organogenesis. IC-
WOX was recruited into root founder cells in the ancestor of euphyllophytes to produce
adventitious and lateral roots, and then IC-WOX was further developed during the evolution
of embryonic root formation in seed plants to produce primary roots. Therefore, the complexity
of root types in euphyllophyte evolution could be based on the diversification of IC-WOX genes.

There are many questions that remain to be answered regarding IC-WOX genes in root
evolution (see Outstanding Questions). In addition, many IC-WOX genes might not function
only in root founder cells but also in other developmental processes [26,33,39]. Thus, it will be
interesting to analyze the non-root-related functions of IC-WOX in evolution. Furthermore, we
have limited information on the expression patterns of WOX genes in diverse species. For
example, the phylogenetic classification and the developmental role of IC-WOX genes in
gymnosperms have not been clearly characterized [27], and some of the WOX genes are
not easily classified into the three clades [19,27] (Figure 2). The investigation of more genes and
their functions in the organogenesis of different root types in diverse species, including
lycophytes, ferns, gymnosperms, and angiosperms, will help us to test and modify this
hypothesis and improve our understanding of the molecular bases of root evolution.
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